题目描述
会场上有 n 个关键区域,不同的关键区域由 m 条无向地毯彼此连接。每条地毯可由三个整数 u、v、w 表示,其中 u 和 v 为地毯连接的两个关键区域编号,w 为这条地毯的美丽度。
由于颁奖典礼已经结束,铺过的地毯不得不拆除。为了贯彻勤俭节约的原则,组织者被要求只能保留至多 K 条地毯,且保留的地毯构成的图中,任意可互相到达的两点间只能有一种方式互相到达。换言之,组织者要求新图中不能有环。现在组织者求助你,想请你帮忙算出这至多 K 条地毯的美丽度之和最大为多少。
输入
第一行包含三个正整数 n、m、K。
接下来 m 行中每行包含三个正整数 u、v、w。
输出
只包含一个正整数,表示这 K 条地毯的美丽度之和的最大值。
5 4 3
1 2 10
1 3 9
2 3 7
4 5 3
提示
选择第 1、2、4 条地毯,美丽度之和为 10 + 9 + 3 = 22。
若选择第 1、2、3 条地毯,虽然美丽度之和可以达到 10 + 9 + 7 = 26,但这将导致关键区域 1、2、3 构成一个环,这是题目中不允许的。
1<=n,m,k<=100000
本题是有关“最大生成树”问题